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4 Amplitude/Linear Modulation

4.1. The big picture:

1

Modulation 
Analog

Digital

Continuous-Wave (CW)

Pulse

Amplitude (Linear) Modulation

Angle Modulation Phase Modulation (PM)
Frequency Modulation (FM)

Double-sideband amplitude modulation
Double-sideband-suppressed-carrier 
(DSB-SC or DSSC or simply DSB) modulation
(Standard) amplitude modulation (AM)

Suppressed-sideband amplitude modulation
Single-sideband modulation (SSB)
Vestigial-sideband modulation (VSB)

Definition 4.2. A sinusoidal carrier signal A cos(2πfct+φ) has three basic
parameters: amplitude, frequency, and phase. Varying these parameters in
proportion to the baseband signal results in amplitude modulation (AM),
frequency16 modulation (FM), and phase modulation (PM), respectively.

Collectively, these techniques are called continuous-wave (CW) mod-
ulation [14, p 111][3, p 162].

16Technically, the variation of “frequency” is not as straightforward as the description here seems to
suggest. For a sinusoidal carrier, a general modulated carrier can be represented mathematically as

x(t) = A(t) cos (2πfct+ φ(t)) .

Frequency modulation, as we shall see later, is resulted from letting the time derivative of φ(t) be linearly
related to the modulating signal. [15, p 112]
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Definition 4.3. Amplitude modulation is characterized by the fact that
the amplitude A of the carrier A cos(2πfct + φ) is varied in proportion to
the baseband (message) signal m(t).

• Because the amplitude is time-varying, we may write the modulated
carrier as

A(t) cos(2πfct+ φ)

• Because the amplitude is linearly related to the message signal, this
technique is also called linear modulation.

4.1 Double-sideband suppressed carrier (DSB-SC) modulation

Definition 4.4. In double-sideband-suppressed-carrier (DSB-SC or
DSSC or simply DSB) modulation, the modulated signal is

x(t) = Ac cos (2πfct)×m(t). (39)

We have seen that the multiplication by a sinusoid gives two shifted and
scaled replicas of the original signal spectrum:

X(f) =
Ac

2
M (f − fc) +

Ac

2
M (f + fc) . (40)

• When we set Ac =
√

2, we get the “simple” modulator discussed in
Example 3.13.

• As usual, we assume that the message is band-limited to B.

• We need fc > B to avoid spectral overlapping. In practice, fc � B.

4.5. Synchronous/coherent detection by the product demodulator:
The incoming modulated signal is first multiplied with a locally generated
sinusoid with the same phase and frequency (from a local oscillator (LO))
and then lowpass-filtered, the filter bandwidth being the same as the mes-
sage bandwidth B or somewhat larger.
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Definition 4.6. A low-pass filter (LPF) is a filter that passes signals
with a frequency lower than a selected cutoff frequency and attenuates
signals with frequencies higher than the cutoff frequency.

• Ideal LPF

• More-practical LPF

4.7. A DSB-SC modem with no channel impairment is shown in Figure 19.
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Figure 19: DSB-SC modem with no channel impairment
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Figure 20: DSB-SC modem: signals and their spectra

When Ac =
√

2, from (40), we know that

X (f) =

√
2

2
M (f − fc) +

√
2

2
M (f + fc)

=
1√
2

(M (f − fc) +M (f + fc)) .

Similarly, from (40),

v (t) = y (t)×
√

2 cos (2πfct) =
√

2x (t) cos (2πfct)

V (f) =
1√
2

(X (f − fc) +X (f + fc))

Alternatively, we can work in the time domain and utilize the trig. iden-
tity from Example 2.4:

v (t) =
√

2x (t) cos (2πfct) =
√

2
(√

2m (t) cos (2πfct)
)

cos (2πfct)

= 2m (t) cos2 (2πfct) = m (t) (cos (2 (2πfct)) + 1)

= m (t) +m (t) cos (2π (2fc) t)
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Figure 21: DSB-SC modem: signals and their spectra (zooming in)
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Figure 22: DSB-SC modem: signals in time domain
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Key equation for DSB-SC modem:

LPF


(
m (t)×

√
2 cos (2πfct)

)
︸ ︷︷ ︸

x(t)

×
(√

2 cos (2πfct)
) = m (t) , (41)

where the frequency response of the LPF should satisfy

HLP (f) =


1, |f | ≤ B,
0, |f | ≥ 2fc −B,
any, otherwise.

4.8. Implementation issues:

(a) Problem 1: Modulator construction

(b) Problem 2: Synchronization between the two (local) carriers/oscillators

(c) Problem 3: Spectral inefficiency

4.9. Spectral inefficiency/redundancy: When m(t) is real-valued, its
spectrum M(f) has conjugate symmetry. With such message, the corre-
sponding modulated signal’s spectrum X(f) will also inherit the symmetry
but now centered at fc (instead of at 0). The portion that lies above fc is
known as the upper sideband (USB) and the portion that lies below fc
is known as the lower sideband (LSB). Similarly, the spectrum centered
at −fc has upper and lower sidebands. Hence, this is a modulation scheme
with double sidebands. Both sidebands contain the same (and complete)
information about the message.

4.10. Synchronization: Observe that (41) requires that we can generate
cos (ωct) both at the transmitter and receiver. This can be difficult in prac-
tice. Suppose that the frequency at the receiver is off, say by ∆f , and that
the phase is off by θ. The effect of these frequency and phase offsets can be
quantified by calculating

LPF
{(
m (t)

√
2 cos (2πfct)

)√
2 cos (2π (fc + ∆f) t+ θ)

}
,
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which gives
m (t) cos (2π (∆f) t+ θ) .

Of course, we want ∆ω = 0 and θ = 0; that is the receiver must generate
a carrier in phase and frequency synchronism with the incoming carrier.
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4.11. Effect of time delay:

Suppose the propagation time is τ , then we have

y (t) = x (t− τ) =
√

2m (t− τ) cos (2πfc (t− τ))

=
√

2m (t− τ) cos (2πfct− 2πfcτ)

=
√

2m (t− τ) cos (2πfct− φτ) .

Consequently,

v (t) = y (t)×
√

2 cos (2πfct)

=
√

2m (t− τ) cos (2πfct− φτ)×
√

2 cos (2πfct)

= m (t− τ) 2 cos (2πfct− φτ) cos (2πfct) .

Applying the product-to-sum formula, we then have

v (t) = m (t− τ) (cos (2π (2fc) t− φτ) + cos (φτ)) .

In conclusion, we have seen that the principle of the DSB-SC modem is
based on a simple key equation (41). However, as mentioned in 4.8, there
are several implementation issues that we need to address. Some solutions
are provided in the subsections to follow. However, the analysis will require
some knowledge of Fourier series which is reviewed in Section 4.3.
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4.2 Energy and Power

Definition 4.12. For a signal g(t), the instantaneous power p(t) dissipated
in the 1-Ω resister is pg(t) = |g(t)|2 regardless of whether g(t) represents a
voltage or a current. To emphasize the fact that this power is based upon
unity resistance, it is often referred to as the normalized (instantaneous)
power.

Definition 4.13. The total (normalized) energy of a signal g(t) is given
by

Eg =

∫ +∞

−∞
pg(t)dt =

∫ +∞

−∞
|g(t)|2 dt = lim

T→∞

∫ T

−T
|g(t)|2 dt.

4.14. By the Parseval’s theorem discussed in 2.43, we have

Eg =

∫ ∞
−∞
|g(t)|2dt =

∫ ∞
−∞
|G(f)|2df.

Definition 4.15. The average (normalized) power of a signal g(t) is given
by

Pg = lim
T→∞

1

T

T/2∫
−T/2

|g (t)|2dt = lim
T→∞

1

2T

∫ T

−T
|g(t)|2 dt.

Definition 4.16. To simplify the notation, there are two operators that
used angle brackets to define two frequently-used integrals:

(a) The “time-average” operator:

〈g〉 ≡ 〈g (t)〉 ≡ lim
T→∞

1

T

∫ T/2

−T/2
g (t)dt = lim

T→∞

1

2T

∫ T

−T
g (t)dt (42)

(b) The inner-product operator:

〈g1, g2〉 ≡ 〈g1 (t) , g2 (t)〉 =

∫ ∞
−∞

g1(t)g
∗
2(t)dt (43)

4.17. Using the above definition, we may write

• Eg = 〈g, g〉 = 〈G,G〉 where G = F {g}

• Pg =
〈
|g|2
〉
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• Parseval’s theorem: 〈g1, g2〉 = 〈G1, G2〉
where G1 = F {g1} and G2 = F {g2}

4.18. Time-Averaging over Periodic Signal: For periodic signal g(t) with
period T0, the time-average operation in (42) can be simplified to

〈g〉 =
1

T0

∫
T0

g (t)dt

where the integration is performed over a period of g.

Example 4.19. 〈cos (2πf0t+ θ)〉 =

Similarly, 〈sin (2πf0t+ θ)〉 =

Example 4.20.
〈
cos2 (2πf0t+ θ)

〉
=

Example 4.21.
〈
ej(2πf0t+θ)

〉
= 〈cos (2πf0t+ θ) + j sin (2πf0t+ θ)〉

Example 4.22. Suppose g(t) = cej2πf0t for some (possibly complex-valued)
constant c and (real-valued) frequency f0. Find Pg.

4.23. When the signal g(t) can be expressed in the form g(t) =
∑
k

cke
j2πfkt

and the fk are distinct, then its (average) power can be calculated from

Pg =
∑
k

|ck|2
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Example 4.24. Suppose g(t) = 2ej6πt + 3ej8πt. Find Pg.

Example 4.25. Suppose g(t) = 2ej6πt + 3ej6πt. Find Pg.

Example 4.26. Suppose g(t) = cos (2πf0t+ θ). Find Pg.
Here, there are several ways to calculate Pg. We can simply use Ex-

ample 4.20. Alternatively, we can first decompose the cosine into complex
exponential functions using the Euler’s formula:

4.27. The (average) power of a sinusoidal signal g(t) = A cos(2πf0t+ θ) is

Pg =

{
1
2 |A|

2, f0 6= 0,

|A|2cos2θ, f0 = 0.

This property means any sinusoid with nonzero frequency can be written in
the form

g (t) =
√

2Pg cos (2πf0t+ θ) .

4.28. Extension of 4.27: Consider sinusoids Ak cos (2πfkt+ θk) whose fre-
quencies are positive and distinct. The (average) power of their sum

g(t) =
∑
k

Ak cos (2πfkt+ θk)

is

Pg =
1

2

∑
k

|Ak|2.
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Example 4.29. Suppose g (t) = 2 cos
(
2π
√

3t
)

+ 4 cos
(
2π
√

5t
)
. Find Pg.

Example 4.30. Suppose g (t) = 3 cos (2t)+4 cos (2t− 30◦)+5 sin (3t). Find
Pg.

4.31. For periodic signal g(t) with period T0, there is also no need to carry
out the limiting operation to find its (average) power Pg. We only need to
find an average carried out over a single period:

Pg =
1

T0

∫
T0

|g (t)|2dt.

Example 4.32.
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4.33. When the Fourier series expansion (to be reviewed in Section 4.3) of
the signal is available, it is easy to calculate its power:

(a) When the corresponding Fourier series expansion g(t) =
∞∑

k=−∞
cke

j2πkf0t

is known,

Pg =
∞∑

k=−∞

|ck|2.

(b) When the signal g(t) is real-valued and its (compact) trigonometric

Fourier series expansion g(t) = c0+2
∞∑
k=1

|ck| cos (2πkf0t+ ∠φk) is known,

Pg = c2
0 + 2

∞∑
k=1

|ck|2 .

Definition 4.34. Based on Definitions 4.13 and 4.15, we can define three
distinct classes of signals:

(a) If Eg is finite and nonzero, g is referred to as an energy signal.

(b) If Pg is finite and nonzero, g is referred to as a power signal.

(c) Some signals17 are neither energy nor power signals.

• Note that the power signal has infinite energy and an energy signal has
zero average power; thus the two categories are disjoint.

Example 4.35. Rectangular pulse

17Consider g(t) = t−1/41[t0,∞)(t), with t0 > 0.
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Example 4.36. Sinc pulse

Example 4.37. For α > 0, g(t) = Ae−αt1[0,∞)(t) is an energy signal with
Eg = |A|2/2α.

Example 4.38. The rotating phasor signal g(t) = cej(2πf0t+θ) is a power
signal with Pg = |c|2.

Example 4.39. The sinusoidal signal g(t) = A cos(2πf0t + θ) is a power
signal with Pg = |A|2/2.

4.40. Consider the transmitted signal

x(t) = m(t) cos(2πfct+ θ)

in DSB-SC modulation. Suppose M(f − fc) and M(f + fc) do not overlap
(in the frequency domain).

(a) If m(t) is a power signal with power Pm, then the average transmitted
power is

Px =
1

2
Pm.

• Q: Why is the power (or energy) reduced?
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• Remark: When x(t) =
√

2m(t) cos(2πfct+ θ) (with no overlapping
between M(f − fc) and M(f + fc)), we have Px = Pm.

(b) If m(t) is an energy signal with energy Em, then the transmitted energy
is

Ex =
1

2
Em.

Example 4.41. Suppose m(t) = cos(2πfct). Find the average power in
x(t) = m(t) cos(2πfct).
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4.3 Fourier Series

Definition 4.42. Exponential Fourier series: Let the (real or complex)
signal r (t) be a periodic signal with period T0.
Suppose the following Dirichlet conditions are satisfied:

(a) r (t) is absolutely integrable over its period; i.e.,
∫ T0
0 |r (t)|dt <∞.

(b) The number of maxima and minima of r (t) in each period is finite.

(c) The number of discontinuities of r (t) in each period is finite.

Then r (t) can be “expanded” into a linear combination of the complex
exponential signals

(
ej2π(kf0)t

)∞
k=−∞ as

r̃ (t) =
∞∑

k=−∞

cke
j2π(kf0)t = c0 +

∞∑
k=1

(
cke

j2π(kf0)t + c−ke
−j2π(kf0)t

)
(44)

where

f0 =
1

T0
and

ck =
1

T0

α+T
0∫

α

r (t) e−j2π(kf0)tdt, (45)

for some arbitrary α.
We give some remarks here.

• r̃ (t) =

{
r (t) , if r (t) is continuous at t
r(t+)+r(t−)

2 , if r (t) is not continuous at t

Although r̃ (t) may not be exactly the same as r(t), for the purpose
of our class, it is sufficient to simply treat them as being the same (to
avoid having two different notations). Of course, we need to keep in
mind that unexpected results may arise at the discontinuity points.

• The parameter α in the limits of the integration (45) is arbitrary. It
can be chosen to simplify computation of the integral. Some references
simply write ck = 1

T0

∫
T0

r (t) e−jkω0tdt to emphasize that we only need

to integrate over one period of the signal; the starting point is not
important.
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• The coefficients ck are called the (kth) Fourier (series) coefficients
of (the signal) r (t). These are, in general, complex numbers.

• c0 = 1
T0

∫
T0

r (t) dt = average or DC value of r(t)

• The quantity f0 = 1
T0

is called the fundamental frequency of the
signal r (t). The kth multiple of the fundamental frequency (for positive
k’s) is called the kth harmonic.

• ckej2π(kf0)t + c−ke
−j2π(kf0)t = the kth harmonic component of r (t).

k = 1 ⇒ fundamental component of r (t).

4.43. Being able to write r (t) =
∑∞

k=−∞ cke
j2π(kf0)t means we can easily

find the Fourier transform of any periodic function:

r (t) =
∞∑

k=−∞

cke
j2π(kf0)t F−−⇀↽−−

F−1
R(f) =

The Fourier transform of any periodic function is simply a bunch of
weighted delta functions occuring at multiples of the fundamental frequency
f0.

4.44. Formula (45) for finding the Fourier (series) coefficients

ck =
1

T0

α+T
0∫

α

r (t) e−j2π(kf0)tdt (46)

is strikingly similar to formula (5) for finding the Fourier transform:

R(f) =

∞∫
−∞

r(t)e−j2πftdt. (47)

There are three main differences.
We have spent quite some effort learning about the Fourier transform of

a signal and its properties. It would be nice to have a way to reuse those
concepts with Fourier series. Identifying the three differences above lets us
see their connection.

59



4.45. Getting the Fourier coefficients from the Fourier transform:

Step 1 Consider a restricted version rT0(t) of r(t) where we only consider r(t)
for one period.

1



Step 2 Find the Fourier transform RT0(f) of rT0(t)

Step 3 The Fourier coefficients are simply scaled samples of the
Fourier transform :

ck =
1

T0
RT0(kf0).

Example 4.46. Train of Impulses: Find the Fourier series expansion for
the train of impulses

δ(T0)(t) =
∞∑

n=−∞
δ (t− nT0)

drawn in Figure 23. This infinite train of equally-spaced -functions is usually
denoted by the Cyrillic letter (shah).

1

െ3 ଴ܶ			‐2 ଴ܶ ‐ ଴ܶ 0									 ଴ܶ 2 ଴ܶ 3 ଴ܶ

ݐ

1       1       1       1       1       1       1

Figure 23: Train of impulses
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4.47. The Fourier series derived in Example 4.46 gives an interesting
Fourier transform pair:

∞∑
n=−∞

δ (t− nT0) =
∞∑

k=−∞

1

T0
ej2π(kf0)t F−−⇀↽−−

F−1
(48)

1

‐3 ଴ܶ			‐2 ଴ܶ ‐ ଴ܶ 0									 ଴ܶ 2 ଴ܶ 3 ଴ܶ

ݐ

1       1       1       1       1       1       1

1




 ‐3 ଴݂			‐2 ଴݂ ‐ ଴݂ 0								 ଴݂ 2 ଴݂ 3 ଴݂

݂

଴݂ ଴݂ ଴݂ ଴݂ ଴݂ ଴݂ ଴݂

A special case when T0 = 1 is quite easy to remember:

∞∑
n=−∞

δ (t− n)
F−−⇀↽−−
F−1

∞∑
k=−∞

δ (f − k) (49)

1

‐3							‐2 ‐1 0								1 2 3
ݐ

1       1       1       1       1       1       1

1




 ‐3							‐2 ‐1 0								1 2 3
݂

1       1       1       1       1       1       1

Once we remember (49), we can easily use the scaling properties of the
Fourier transform (21) and the delta function (18) to generalize the special
case (49) back to (48):

∞∑
n=−∞

δ (at− n) = x (at)
F−−⇀↽−−
F−1

1

|a|
X

(
f

a

)
=

1

|a|

∞∑
k=−∞

δ

(
f

a
− k
)

1

|a|

∞∑
n=−∞

δ
(
t− n

a

) F−−⇀↽−−
F−1

1

|a|
|a|

∞∑
k=−∞

δ (f − ka)

∞∑
n=−∞

δ
(
t− n

a

) F−−⇀↽−−
F−1
|a|

∞∑
k=−∞

δ (f − ka)

At the end, we plug-in a = f0 = 1/T0.
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Example 4.48. Find the Fourier coefficients of the square pulse periodic
signal [6, p 57].

1

଴ܶ
4െ ଴ܶ

4
଴ܶെ ଴ܶ

ݐ

ݎ ݐ

ଵ

బ்
ܴ బ் ݂ : the scaled 

Fourier transform of 
the restricted (one 
period) version of ݎ ݐ .

period

0

0

ck =
1

T0
RT0 (kf0) =

1

T0

(
T0

2
sinc

(
2π

(
T0

4

)
(f)

)∣∣∣∣
f=kf0

)
=

1

2
sinc

(
k
π

2

)
=

1

2

sin
(
kπ2
)

kπ2
=

sin
(
kπ2
)

kπ

k k × π
2 sin

(
k × π

2

)
ck =

sin(k π2 )
kπ

0

1

2

3

4

5
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Remarks:

(a) Multiplication by this signal is equivalent to a switching (ON-OFF)
operation. (Same as periodically turning the switch on (letting another
signal pass through) for half a period T0.

଴ܶ
4െ ଴ܶ

4
଴ܶ

ݐ

ݐ

݉ ݐ

OFF ON OFF ON OFF ON OFF ON OFF ON OFF

ݐ

݉ ݐ

െ ଴ܶ

(b) This signal can be expressed via a cosine function with the same period:

r (t) = 1 [cos (2πf0t) ≥ 0] =

{
1, cos (2πf0t) ≥ 0,
0, otherwise.

1

଴ܶ
4െ ଴ܶ

4
଴ܶ

ݐ

ݎ ݐ

െ ଴ܶ

(c) A duty cycle is the percentage of one period in which a signal is
“active”. Here,

duty cycle = proportion of the “ON” time =
width

period
.

In this example, the duty cycle is T0/2
T0

= 50%. When the duty cycle is 1
n ,

the nth harmonic (cn) along with its nonzero multiples are suppressed.
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4.49. Parseval’s Identity: Pr =
〈
|r (t)|2

〉
= 1

T0

∫
T0

|r (t)|2 dt =
∞∑

k=−∞
|ck|2.

4.50. Fourier series expansion for real valued function: Suppose
r (t) in the previous section is real-valued; that is r∗ = r. Then, we have
c−k = c∗k and we provide here three alternative ways to represent the Fourier
series expansion:

r̃ (t) =
∞∑

k=−∞

cne
j2πkf0t = c0 +

∞∑
k=1

(
cke

j2πkf0t + c−ke
−j2πkf0t

)
(50a)

= c0 +
∞∑
k=1

(ak cos (2πkf0t)) +
∞∑
k=1

(bk sin (2πkf0t)) (50b)

= c0 + 2
∞∑
k=1

|ck| cos (2πkf0t+ ∠ck) (50c)

where the corresponding coefficients are obtained from

ck =
1

T0

α+T
0∫

α

r (t) e−j2πkf0tdt =
1

2
(ak − jbk) (51)

ak = 2Re {ck} =
2

T0

∫
T0

r (t) cos (2πkf0t) dt (52)

bk = −2Im {ck} =
2

T0

∫
T0

r (t) sin (2πkf0t) dt (53)

2 |ck| =
√
a2
k + b2

k (54)

∠ck = − arctan

(
bk
ak

)
(55)

c0 =
a0

2
(56)

The Parseval’s identity can then be expressed as

Pr =
〈
|r (t)|2

〉
=

1

T0

∫
T0

|r (t)|2dt =
∞∑

k=−∞

|ck|2 = c2
0 + 2

∞∑
k=1

|ck|2
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4.51. To go from (50a) to (50b) and (50c), note that when we replace c−k
by c∗k, we have

cke
j2πkf0t + c−ke

−j2πkf0t = cke
j2πkf0t + c∗ke

−j2πkf0t

= cke
j2πkf0t +

(
cke

j2πkf0t
)∗

= 2 Re
{
cke

j2πkf0t
}
.

• Expression (50c) then follows directly from the phasor concept:

Re
{
cke

j2πkf0t
}

= |ck| cos (2πkf0t+ ∠ck) .

• To get (50b), substitute ck by Re {ck}+ j Im {ck}
and ej2πkf0t by cos (2πkf0t) + j sin (2πkf0t).

Example 4.52. For the train of impulses in Example 4.46,

∞∑
n=−∞

δ (t− n) =
∞∑

k=−∞

1

T0
ej2π(kf0)t =

1

T0
+

2

T0

∞∑
k=1

cos kω0t (57)

Example 4.53. For the rectangular pulse train in Example 4.48,

1

଴ܶ
4െ ଴ܶ

4
଴ܶ

ݐ

Fourier series expansion:

ݎ ݐ

ݎ ݐ ൌ
1
2 ൅

1
ߨ ݁

௝ ଶగ௙బ௧ െ
1
ߨ3 ݁

௝ ଶగ ଷ௙బ ௧ ൅
1
ߨ5 ݁

௝ ଶగ ହ௙బ ௧ ൅ ⋯

൅
1
ߨ ݁

௝ ଶగ ି௙బ ௧ െ
1
ߨ3 ݁

௝ ଶగ ିଷ௙బ ௧ ൅
1
ߨ5 ݁

௝ ଶగ ିହ௙బ ௧ ൅ ⋯

ݎ ݐ ൌ
1
2 ൅

2
ߨ cos ߨ2 ଴݂ݐ െ

2
ߨ3 cos ߨ2 3 ଴݂ ݐ ൅

2
ߨ5 cos ߨ2 5 ଴݂ ݐ ൅ ⋯

Trigonometric Fourier series expansion: ݁௝௫ ൅ ݁ି௝௫ ൌ 2cos ݔ

െ ଴ܶ

65



1 [cosω0t ≥ 0] =
1

2
+

2

π

(
cosω0t−

1

3
cos 3ω0t+

1

5
cos 5ω0t−

1

7
cos 7ω0t+ . . .

)
(58)

Example 4.54. Bipolar square pulse periodic signal [6, p 59]:

sgn(cosω0t) =
4

π

(
cosω0t−

1

3
cos 3ω0t+

1

5
cos 5ω0t−

1

7
cos 7ω0t+ . . .

)

1 

-1 

0T  0T−  t

1 

0T  0T−  t

 

Figure 24: Bipolar square pulse periodic signal
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